

#### (Approved by AICTE, Affiliated to Anna University, Chennai, India) Kaikkurichi, Pudukkottai – 622 303 DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013 COURSE OUTCOMES (CO)

#### **I SEMESTER**

#### HS6151- TECHNICAL ENGLISH-I

| Students will be able to |
|--------------------------|
|--------------------------|

| CO1 | Apply the collaborative and social aspects of research and writing processes.                                                                                                                                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Comprehend that research and writing is a series of tasks, including accessing, retrieving, evaluating, analyzing and synthesizing appropriate data and information from sources that vary in content, format, structure and scope. |
| CO3 | Use appropriate technologies to organize, present and communicate information to address a range of audiences, purposes and genres.                                                                                                 |
| CO4 | Design the multidisciplinary settings to manage projects as an individual, as a member or leader after taking the exercises like role-play, group discussion and making presentations.                                              |
| CO5 | Model the life-long learning methods suitable for all the environments committed to professional ethics and responsibilities after inculcating the habit of reading and writing.                                                    |
| CO6 | Analyze and identify the root for effective managerial skills through different spoken discourse and excerpts.                                                                                                                      |

#### MA6151- MATHEMATICS-I

#### Students will be able to

| CO1        | Describe a clear idea of matrix algebra pertaining eigen values and eigen vectorsin addition dealing with quadratic forms.             |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|
| CO2        | Learn infinite series and their convergence and acquire the knowledge of with limitations.                                             |
| <b>CO3</b> | Use infinite series approximations for solutions arising in mathematical modeling.                                                     |
| CO4        | Explain and characterize phenomena which evolve around circle of curvature and envelope.                                               |
| CO5        | Extend the function of a one variable to several variables. Multivariable functions of real variables arise inevitable in engineering. |
| CO6        | Expose to double and triple integration so that they can handle integrals of higher order which are applied in engineering field.      |

#### PH6151- ENGINEERING PHYSICS-I

| CO1        | Classify the Bravais lattices and different types of crystal structures and growth       |
|------------|------------------------------------------------------------------------------------------|
|            | technique.                                                                               |
| CO2        | Demonstrate the properties of elasticity and heat transfer through objects.              |
| CO3        | Explain black body radiation, properties of matter waves and Schrodinger wave            |
| COS        | equations.                                                                               |
| CO4        | Describe and analyzing the quantum nature of radiation and matter to solve the real time |
| 004        | societal and technological problems.                                                     |
| CO5        | Illustrate the acoustic requirements, production and application of ultrasonics.         |
| <b>CO6</b> | Examine the characteristics of laser and optical fiber.                                  |



#### (Approved by AICTE, Affiliated to Anna University, Chennai, India) Kaikkurichi, Pudukkottai – 622 303 DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013 COURSE OUTCOMES (CO)

#### CY6151- ENGINEERING CHEMISTRY-I

#### Students will be able to

| CO1 | Classify the polymers, different polymerization techniques and its uses.               |
|-----|----------------------------------------------------------------------------------------|
| CO2 | Describe the laws of thermodynamics, various thermodynamics functions and their        |
|     | significance.                                                                          |
| CO3 | Explain the photo physical processes and the components of analytical instruments.     |
| CO4 | Illustrate the phase diagrams, alloys and heat treatment processes                     |
| CO5 | Discuss the synthesis, characteristics and the applications of nano materials.         |
| CO6 | Create the knowledge of nonmaterial's and their applications in fields like medicinal, |
|     | electrical, electronic, chemical, etc.                                                 |
|     |                                                                                        |

#### GE6151- COMPUTER PROGRAMMING

#### Students will be able to

| CO1        | Explain the basic organization of computers, the number systems and write the pseudo    |
|------------|-----------------------------------------------------------------------------------------|
|            | code for algorithms and flow chart.                                                     |
| CO2        | Develop 'C' programming fundamentals, looping statements and solve problems.            |
| CO3        | Design 'C' programs for arrays and strings.                                             |
| <b>CO4</b> | Use functions with pass by value and reference, pointers in programs.                   |
| CO5        | Develop coding in 'C' for structures and unions with storage classes and pre-processor. |
| CO6        | Design and execute C programs for simple applications.                                  |
|            |                                                                                         |

#### **GE6152- ENGINEERING GRAPHICS**

Students will be able to

| CO1        | Construct the conic sections and special curves and outline their practical applications<br>and sketch the orthographic views from pictorial views and models |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | and sketch the ofthographic views from pictorial views and models.                                                                                            |
| CO2        | Apply the principles of orthographic projections of points in all quadrants, lines and                                                                        |
|            | planes in first quadrant.                                                                                                                                     |
| CO3        | Draw the projections of simple solids like prisms, pyramids, cylinder and cone and obtain                                                                     |
|            | the traces of plane figures.                                                                                                                                  |
| CO4        | Design the sectional views of solids like cube, prisms, pyramids, cylinders & cones and                                                                       |
|            | Development of its lateral surfaces.                                                                                                                          |
| CO5        | Apply the principles of isometric projection and perspective projection of simple solids                                                                      |
|            | and truncated prisms, pyramids, cone and cylinders.                                                                                                           |
| <b>CO6</b> | Build an engineering component using Paper drawing as well as in CAD.                                                                                         |

#### **GE6161- COMPUTER PRACTICES LABORATORY**

| CO1 | Prepare data using MS-word & Excel to visualize graphs, charts in MS-Excel.            |
|-----|----------------------------------------------------------------------------------------|
| CO2 | Outline the given problem using flowchart and to program using Switch case & Control   |
|     | structures.                                                                            |
| CO3 | Develop the code using decision making & looping statements.                           |
| CO4 | Apply passing parameters using Arrays & Functions.                                     |
| CO5 | Use structure and Union for a given database and to bring out the importance of Unions |
|     | over structure.                                                                        |
| CO6 | Design and implement C programs for simple applications.                               |
|     |                                                                                        |



#### (Approved by AICTE, Affiliated to Anna University, Chennai, India) Kaikkurichi, Pudukkottai – 622 303 DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013 COURSE OUTCOMES (CO)

#### **GE6162- ENGINEERING PRACTICES LABORATORY**

#### Students will be able to

| CO1 | Demonstrate wiring for a simple residential house, identify the ratings of various         |
|-----|--------------------------------------------------------------------------------------------|
|     | appliances like Fluorescent tube, incandescent lamp, etc.                                  |
| CO2 | Calculate the different Electrical quantities, measure the energy consumption using single |
|     | phase energy meter.                                                                        |
| CO3 | Measure the resistance to earth of an electrical equipment, analyze AC signal parameters   |
|     | using CRO.                                                                                 |
| CO4 | Verify the Truth tables of Logic gates AND, OR, EOR and NOT, generate clock signal         |
|     | using suitable gates.                                                                      |
| CO5 | Develop soldering in a PCB, measure ripple factor of Half Wave Rectifier and Full Wave     |
|     | Rectifier.                                                                                 |
| CO6 | Provide exposure to the students with hands-on experience on various basic engineering     |
|     | practices in Civil and Mechanical Engineering.                                             |

#### **GE6163-PHYSICS AND CHEMISTRY LABORATORY-I**

#### Students will be able to

| CO1 | To apply the physics principles of Thermal physics and Properties of Matter to evaluate     |
|-----|---------------------------------------------------------------------------------------------|
|     | properties of materials.                                                                    |
| CO2 | Evaluate the wavelength of spectral lines using spectrometer, the wavelength of laser,      |
|     | particle size, acceptance angle of an optical fiber using semiconductor diode laser and the |
|     | thickness of a thin wire through interference fringes using Air wedge apparatus.            |
| CO3 | Appraise the velocity of sound and compressibility of the liquid using ultrasonic           |
|     | interferometer and thermal conductivity for bad conductors using Lee's disc apparatus.      |
| CO4 | Determine the DO content in water sample by winkler's method and molecular weight           |
|     | of polymer by Ostwald viscometer.                                                           |
| CO5 | Find the strength of an acid using pH meter and conductometer.                              |
| CO6 | Estimate the amount of weak and strong acids in a mixture by conductometer.                 |
|     | KOPS J                                                                                      |

#### **II SEMESTER**

#### Students will be able to Speak clearly, confidently, comprehensibly, and communicate with one or many listeners **CO1** using appropriate communicative strategies. Define the impact of the professional engineering solution in societal and environmental contexts with the help of the basic grammar taught to communicate effectively and **CO2** confidently. Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide **CO3** vocabulary range, organizing their ideas logically on a topic. **CO4** Read different genres of texts adopting various reading strategies. **CO5** Listen/view and comprehend different spoken discourses/excerpts in different accents. Recognize, understand, and analyze the context within which language, information, and **CO6** knowledge are produced, managed, organized, and disseminated.

#### HS6251-TECHNICAL ENGLISH-II



#### (Approved by AICTE, Affiliated to Anna University, Chennai, India) Kaikkurichi, Pudukkottai – 622 303 DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013 COURSE OUTCOMES (CO)

#### PH6251-ENGINEERING PHYSICS - II

| Students will be able to |                                                                                                                            |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------|
| CO1                      | Illustrate classical and quantum free electron theory and calculate carrier concentration in metals.                       |
| CO2                      | Describe the carrier concentration in semi conductors and identify the p-type and n-type semi conductor using hall effect. |
| CO3                      | Illustrate the special material properties such as magnetism.                                                              |
| <b>CO4</b>               | Discuss the super conductivity.                                                                                            |
| CO5                      | Explain the dielectrics, types of polarization, losses and breakdown                                                       |
| CO6                      | Discuss the properties, preparation and applications of metallic alloys, SMA, nano materials, NLO, Bio-materials.          |

#### MA6251-MATHEMATICS-II

#### Students will be able to

| CO1 | Solve ordinary differential equations that model most of the engineering problems.     |
|-----|----------------------------------------------------------------------------------------|
| CO2 | Acquaint the concepts of vector calculus-like Gradient, Divergence, Curl, Directional  |
|     | derivative, Irrotational vector and Solenoidal vector.                                 |
| CO3 | Make to appreciate the purpose of using transforms to create new domain in which it is |
| COS | easier to handle the problem that is being investigated.                               |
| CO4 | Develop an Explaining of the standard techniques of complex variable and mapping so as |
|     | to enable the student to apply them with confidence, in application areas such as heat |
|     | conduction, elasticity, fluid dynamics and flow of electric current.                   |
| CO5 | Expose to the concept of Cauchy's integral theorem, Taylor, Laurent expansions and     |
|     | Singular points.                                                                       |
| CO6 | Use Application of residue theorem to evaluate complex integrals.                      |
|     |                                                                                        |

#### CY6251-ENGINEERING CHEMISTRY-II

| Students will be able to |                                                                                            |
|--------------------------|--------------------------------------------------------------------------------------------|
| CO1                      | Explain the problems of using hard water in boilers and the methods of treatment of water  |
|                          | for boiler use.                                                                            |
| CO2                      | Design the electrochemical cells and to identify the types of corrosion and the methods of |
|                          | preventing.                                                                                |
| CO3                      | Illustrate the methods of harnessing energy from non-conventional energy sources.          |
| <b>CO4</b>               | Classify various engineering materials and their importance.                               |
| CO5                      | Relate the significance of solid, liquid and gaseous fuels and to calculate the calorific  |
|                          | values of fuels and the requirement of air for combustion in furnaces.                     |
| CO6                      | Analyze issues related to fuels and their synthesis and able to understand working of IC   |
|                          | and diesel engines.                                                                        |

#### **GE6251-BASIC CIVIL AND MECHANICAL ENGINEERING**

| CO1 | Explain the working principles of various power plants and differentiate the pumps and turbines. |
|-----|--------------------------------------------------------------------------------------------------|
| CO2 | State the functions of IC engine and classify the various types of boilers.                      |
| CO3 | Apply the principles of vapour absorption and compression systems and Explain the                |



(Approved by AICTE, Affiliated to Anna University, Chennai, India) Kaikkurichi, Pudukkottai – 622 303 DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013 COURSE OUTCOMES (CO)

|     | Operation of air conditioner.                                                                                                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| CO4 | Summarize the principles of surveying and use various measurements for surveying.                                                |
| CO5 | Discuss about various engineering materials and levelling instruments.                                                           |
| CO6 | Classify the types of bridges, foundation, floorings, roofs, plasters and R.C.C structural members and state the purpose of dam. |

#### **GE6253 -ENGINEERING MECHANICS**

| Students will be able to |                                                                                             |
|--------------------------|---------------------------------------------------------------------------------------------|
| CO1                      | Explain the differential principles apply to solve engineering problems dealing with force. |
| CO2                      | Describe equilibrium of rigid bodies in two dimensions & equilibrium of rigid bodies in     |
|                          | three dimensions.                                                                           |
| CO3                      | Demonstrate T-section, I-section, angle section, hollow section by using standard formula.  |
| CO4                      | Explain the differential principles applies to solve engineering problems dealing with      |
|                          | velocity and acceleration.                                                                  |
| CO5                      | Illustrate equilibrium analysis of simple system with sliding friction & wedge friction.    |
| <b>CO6</b>               | Describe the rolling resistance, translation and rotation of rigid bodies.                  |

#### GE6262- PHYSICS AND CHEMISTRY LABORATORY - II

#### Students will be able to

| CO1        | Appraise the Young's modulus of the beam by uniform and non uniform bending method, the moment of inertia and Rigidity Modulus for thin wire using Torsion Pendulum. |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2        | Use Poiseuille's method for determining the coefficient of viscosity of the liquid                                                                                   |
| CO3        | Estimate the refractive index of spectral lines for determining the dispersive power of a                                                                            |
|            | prism circuit.                                                                                                                                                       |
| <b>CO4</b> | Determine the type, amount of alkalinity, hardness in a given water sample.                                                                                          |
| CO5        | Evaluate the amount of copper using EDTA method.                                                                                                                     |
| CO6        | Examine the potentiometric redox titration and Conductometric precipitation titration.                                                                               |

#### **GE6261- COMPUTER AIDED DRAFTING AND MODELING LABORATORY**

HOPE

| CO1 | Explain the study of capability of software for drafting and modeling, draw a title block with necessary text and projection symbol. |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Demonstrate drawing of curve, front view and top view of simple solids.                                                              |
| CO3 | Explain drawing of plan of a residential building                                                                                    |
| CO4 | Illustrate drawing of a simple steel truss, sectional view of prism, pyramid, cylinder, cone                                         |
|     | etc.,                                                                                                                                |
| CO5 | Describe the isometric projection of simple objects.                                                                                 |
| CO6 | Explain creation of 3-D models of simple objects and obtaining 2-D multi view drawings                                               |
|     | from 3-D model.                                                                                                                      |



#### (Approved by AICTE, Affiliated to Anna University, Chennai, India) Kaikkurichi, Pudukkottai – 622 303 DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013 COURSE OUTCOMES (CO)

#### **III SEMESTER**

#### MA6351- TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

#### Students will be able to

| CO1 | Explain about the basic concepts of PDE for solving standard partial differential equations.                                           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Demonstrates the Fourier series analysis which is central to many applications in engineering.                                         |
| CO3 | Describe the applications of partial differential equations.                                                                           |
| CO4 | Develop an understanding of the Fourier transform techniques used in wide variety of situations.                                       |
| CO5 | Comprehend the effective mathematical tools for the solutions of partial differential equations that model several physical processes. |
| CO6 | Design Z transform techniques for discrete time systems.                                                                               |

#### **GE6351- ENVIRONMENTAL SCIENCE AND ENGINEERING**

#### Students will be able to

| CO1        | Implement and discuss about the scientific, technological, economic and political        |
|------------|------------------------------------------------------------------------------------------|
|            | solutions to environmental problems.                                                     |
| CO2        | Comprehend the interrelationship between living organism and environment.                |
| CO3        | Describe about the importance of environment by assessing its impact on the human world: |
|            | envision the surrounding environment, its functions and its value.                       |
| <b>CO4</b> | Explain the dynamic processes and the features of the earth's interior and surface.      |
| CO5        | Discuss about the integrated themes and biodiversity, natural resources.                 |
| CO6        | Demonstrate the concept of pollution control and waste management.                       |
|            |                                                                                          |

| CE6301 ENGINEERING GEOLOGY |                                                                                                              |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Studen                     | ts will be able to                                                                                           |  |
| CO1                        | Describe the importance of geological knowledge such as earthquake & seismic zones in India.                 |  |
| CO2                        | Demonstrate the physical properties of minerals such as quartz, feldspar, pyroxene etc.,                     |  |
| CO3                        | Explain the classification, description, occurrence, engineering properties, distribution and uses of rocks, |  |
| <b>CO4</b>                 | Explain the types of foundations and other related aspects.                                                  |  |
| CO5                        | Describe about the structural geology and geophysical methods.                                               |  |
| CO6                        | Illustrate the remote sensing for civil engineering applications.                                            |  |
|                            |                                                                                                              |  |

#### CE6302 MECHANICS OF SOLIDS

| CO1 | Describe the fundamental concepts of stress and strain in mechanics of solids and    |
|-----|--------------------------------------------------------------------------------------|
|     | structures.                                                                          |
| CO2 | Explain about shear force and bending moment diagram for statically determinate beam |
|     | with concentrated loads.                                                             |
| CO3 | Illustrate the conjugate beam method for computation of slopes and deflection of     |
|     | determinate beams.                                                                   |
| CO4 | Demonstrate the stresses and deflection in circular solid and hollow shaft.          |



(Approved by AICTE, Affiliated to Anna University, Chennai, India)

Kaikkurichi, Pudukkottai – 622 303

#### DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013

# **COURSE OUTCOMES (CO)**

CO5Describe about 2-D normal and shear stresses on any plane.CO6Describe the analysis of plane trusses, method of joints and method of sections.

#### **CE6303 MECHANICS OF FLUIDS**

| Students will be able to |                                                                                             |
|--------------------------|---------------------------------------------------------------------------------------------|
| CO1                      | Explain about basics of fluids-definition & distinction between solid and fluid.            |
| CO2                      | Illustrate the fluid kinematics, flow visualization, lines and types of flow                |
| CO3                      | Demonstrate the laminar flow between parallel plates and circular tubes.                    |
| CO4                      | Explain the boundary layer separation and control, draft in flat plate & lift co-efficient. |
| CO5                      | Demonstrate the fundamental dimensions, dimensional homogeneity, Rayleigh's method          |
| 005                      | & Buckingham pi-theorem.                                                                    |
| CO6                      | Expain about the dimensionless parameters, similitude, model studies and distorted          |
|                          | models.                                                                                     |

#### CE6304 SURVEYING-I Students will be able to Explain the basic principles, equipment and accessories for ranging and chaining methods. **CO1** Describe the compass surveying to measure angles, bearings & methods of plane table **CO2** surveying. Illustrate about the curvature and refraction, sources of error in leveling and reciprocal **CO3** levelling. **CO4** Demonstrate the longitudinal and cross sectional plotting and contouring methods. **CO5** Explain the horizontal and vertical angle determination by using theodolite. Describe the temporary and permanent adjustment of theodolite. **CO6**

#### CE6311 SURVEY PRACTICAL I

| Students will be able to |                                                                                             |
|--------------------------|---------------------------------------------------------------------------------------------|
| <b>CO1</b>               | Explain the basics of chaining and its accessories, aligning & ranging.                     |
| CO2                      | Illustrate the chain and compass traversing.                                                |
| CO3                      | Demonstrate the plane table methods like radiation, intersection, traversing and resection. |
| CO4                      | Explain basic concepts of levels, leveling staff, fly level and dumpy level.                |
| CO5                      | Describe the check leveling, Longitudinal & Cross section.                                  |
| CO6                      | Explain contouring and study of theodolite.                                                 |

#### CE6312 COMPUTER AIDED BUILDING DRAWING

| Students will be able to |                                                                                |
|--------------------------|--------------------------------------------------------------------------------|
| CO1                      | Explain the principles of planning , orientation and complete joinery details. |
| CO2                      | Illustrate the building with load bearing walls.                               |
| CO3                      | Explain the building with sloping roof.                                        |
| CO4                      | Describe the reinforced cement concrete structures.                            |
| CO5                      | Demonstrate about industrial building north light roof structure.              |



(Approved by AICTE, Affiliated to Anna University, Chennai, India) Kaikkurichi, Pudukkottai – 622 303 DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013 COURSE OUTCOMES (CO)

**CO6** Explain about the building information modeling.

#### **IV SEMESTER**

#### MA6459 NUMERICAL METHODS

#### Students will be able to

| CO1        | Explain the basic concepts and techniques for solving algebraic and transcendental equations.   |
|------------|-------------------------------------------------------------------------------------------------|
|            |                                                                                                 |
| CON        | Demonstrate the numerical techniques of interpolation and error approximations in various       |
| 002        | intervals in real life situations                                                               |
| 001        | Illustrate the numerical techniques of differentiation and integration for engineering          |
| CO3        | problems                                                                                        |
|            | Preservice the langevice deep of various techniques and mathede for a claim of first and second |
| CO4        | Describe the knowledge of various techniques and methods for solving first and second           |
|            | order ordinary differential equations.                                                          |
| CO5        | Explain the partial and ordinary differential equations with initial and boundary conditions    |
|            | by using certain techniques with engineering applications.                                      |
| <b>CO6</b> | Illustrate dimensional Laplace's and poisons equation problems on rectangular domain            |

#### **CE6401 CONSTRUCTION MATERIALS**

| Students will be able to |                                                                                    |
|--------------------------|------------------------------------------------------------------------------------|
| <b>CO1</b>               | Explain about the selection of material and tests on stone and building materials. |
| CO2                      | Demonstrate the preparation and manufacturing processes of lime mortar, cement.    |
| CO3                      | Describe about the flow, compaction factor & properties of hardened concrete.      |
| CO4                      | Explain the basic concepts of panels of laminates, steels, aluminum and other      |
|                          | metallic materials.                                                                |
| CO5                      | Describe about the basics of fiber, glass reinforced plastic, clay product,        |
|                          | refractoriness and composite materials.                                            |
| <b>CO6</b>               | Illustrate the applications of laminar composites and fiber textiles.              |
|                          |                                                                                    |

#### **CE6402 STRENGTH OF MATERIALS**

# Students will be able toCO1Explain about the strain energy and strain energy density.CO2Demonstrate the propped cantilever, fixed beams, fixed end moment and reactions.CO3Describe the Euler's theory of long columns, critical loads for prismatic columns with<br/>different end conditions.CO4Determination of principal stresses and principal planes.CO5Describe the unsymmetrical bending of beams and also symmetrical and<br/>unsymmetrical sections.CO6Solve the shear centre of curved beams using Winkler batch formula.

#### **CE6403 APPLIED HYDRAULIC ENGINEERING**

| CO1 | Explain the basic concepts & differences between pipe flow and open channel flow. |
|-----|-----------------------------------------------------------------------------------|
| CO2 | Describe the dynamics equations of gradually varied and spatially varied flows.   |
| CO3 | Illustrate the basic applications of energy equation & RVF.                       |



(Approved by AICTE, Affiliated to Anna University, Chennai, India)

Kaikkurichi, Pudukkottai – 622 303

# DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013

# COURSE OUTCOMES (CO)

| <b>CO4</b> | Demonstrate the impact of jet on vanes, turbines & classification of turbines.                        |
|------------|-------------------------------------------------------------------------------------------------------|
| CO5        | Describe the minimum speed to start the pump & cavitations in pumps.                                  |
| CO6        | Explain the basics of flow separation conditions, air vessels, indicator diagrams and its variations. |

#### CE6404 SURVEYING II

#### Students will be able to

| CO1        | Describe the horizontal & vertical control methods.                                       |
|------------|-------------------------------------------------------------------------------------------|
| CO2        | Illustrate the sources, precautions, corrections and classification of errors .           |
| <b>CO3</b> | Explain about the electro optical system and its working principle and sources of error . |
| CO4        | Describe basic concepts of space, control and user segments of GPS.                       |
| CO5        | Demonstrate the route survey for highway, railway and waterways.                          |
| <b>CO6</b> | Describe the fundamentals of photogrammetric and remote sensing.                          |

#### **CE6405 SOIL MECHANICS**

#### Students will be able to

| CO1        | Explain the index properties of soil, BIS classification system & soil compaction.     |
|------------|----------------------------------------------------------------------------------------|
| CO2        | Describe the basic concepts of soil water, static pressure in water & effective stress |
|            | concept in soil.                                                                       |
| CO3        | Illustrate the stress distribution, soil media & Boussinsq theory.                     |
| <b>CO4</b> | Demonstrate the shear strength of cohesive & cohesion less soil.                       |
| CO5        | Explain the slope failure mechanisms types and solve infinite & finite slopes.         |
| <b>CO6</b> | Describe the friction circle method, stability number & slope protection measures.     |
|            |                                                                                        |

# CE6411 STRENGTH OF MATERIALS LABORATORY

Students will be able to

| CO1 | Explain the test on mild steel rod & compression test on wood.                   |
|-----|----------------------------------------------------------------------------------|
| CO2 | Illustrate the double shear test on metal & torsion test on mild steel rod.      |
| CO3 | Demonstrate the impact test on metal specimen & hardness test on metals.         |
| CO4 | Describe the deflection test on metal beam & compression test on helical spring. |
| CO5 | Explain the deflection test on carriage spring.                                  |
| CO6 | Illustrate about the various types of test on cement.                            |

#### CE6412 HYDRAULIC ENGINEERING LABORATORY

| CO1 | Explain about the flow measurement like calibration of rotometer & flow through venturi & orifice meter. |
|-----|----------------------------------------------------------------------------------------------------------|
| CO2 | Demonstrate the flow through variable duct area, orifice, mouth piece & notches.                         |
| CO3 | Illustrate the losses in pipes like determination of friction co efficient in pipes.                     |
| CO4 | Describe the characteristics of centrifugal pumps, gear pumps, submersible pumps &                       |
|     | reciprocating pump.                                                                                      |
| CO5 | Explain the characteristics of Pelton wheel turbine, Francis turbine and Kaplan turbine.                 |
| CO6 | Demonstrate the metacentric height.                                                                      |



# (Approved by AICTE, Affiliated to Anna University, Chennai, India) Kaikkurichi, Pudukkottai – 622 303 DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013 COURSE OUTCOMES (CO)

| Students will be able to |                                                                                          |
|--------------------------|------------------------------------------------------------------------------------------|
| CO1                      | Explain the basics of theodolites their setting and their adjustments.                   |
| CO2<br>CO3               | Demonstrate the measurements of horizontal angle by reiteration, repetition and vertical |
|                          | aligies.                                                                                 |
|                          | plane method.                                                                            |
| <b>CO4</b>               | Describe the tachometry tangential and stadia system.                                    |
| CO5                      | Explain the setting out works, foundation marking, simple & transition curve.            |
| CO6                      | Demonstrate the field observation for calculation of azimuth & field work using total    |
|                          | station.                                                                                 |

#### **V SEMESTER**

#### CE6501 STRUCTURAL ANALYSIS I

# Students will be able to

| <b>CO1</b> | Explain the Degree of static & kinematic indeterminacies for plane frames.                |
|------------|-------------------------------------------------------------------------------------------|
| CO2        | Demonstrate the influence lines for reactions in statically determinate structures.       |
| CO3        | Illustrate about the arches as structural forms, examples of arch structures and types of |
|            | arches.                                                                                   |
| CO4        | Analyse the continuous beams and rigid frames with & without sway.                        |
| CO5        | Solve the distribution factor, carryover of moments, stiffness & carryover factor using   |
|            | moment distribution method                                                                |
| <b>CO6</b> | Analyse the continuous beams, plane rigid frame with & without sway.                      |

#### CE6502 FOUNDATION ENGINEERING

| Students will be able to |                                                                                           |
|--------------------------|-------------------------------------------------------------------------------------------|
| CO1                      | Explain about the site investigation, selection of foundation & methods of exploration.   |
| CO2                      | Illustrate the location & depth of foundation & bearing capacity of shallow foundation on |
|                          | homogeneous deposits.                                                                     |
| CO3                      | Demonstrate the types of footings & contact pressure distribution                         |
| CO4                      | Describe the types of pile & their functions & factors influencing the selection of pile. |
| CO5                      | Explain the plastic equilibrium of soils in active & passive states.                      |
| CO6                      | Illustrate the earth pressure on retaining walls of simple configurations & Culmann       |
|                          | graphical method.                                                                         |

#### CE6503 ENVIRONMENTAL ENGINEERING I

|     | Productional and the medicine and an end of a scheme in a distance of the strength of the scheme of |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Explain about the public water supply system and also planning objectives & design period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | of water supply system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CO2 | Demonstrate about the water supply, intake structures and their functions & conduits for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CO3 | Illustrate the water treatment unit operations, processes, principles, functions and design of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | chemical feeding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CO4 | Explain the principles & functions of aeration and also removal of manganese & iron.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CO5 | Describe the requirements of water distribution system, and their functions & drawings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



(Approved by AICTE, Affiliated to Anna University, Chennai, India) Kaikkurichi, Pudukkottai – 622 303

# DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013 COURSE OUTCOMES (CO)

CO6

Explain the principles & design of water supply in buildings, house service connection, fixtures & fittings.

#### **CE6504 HIGHWAY ENGINEERING** Students will be able to Explain about the significance of highway planning, model limitations towards **CO1** sustainability. Illustrate about the cross sectional elements, sight distances, horizontal curves, super **CO2** elevation & transition curves. **CO3** Demonstrate the design principles of flexible & rigid pavements. Explain about the highway construction materials, properties, testing methods & CBR test **CO4** for subgrade. Describe the pavement distress in flexible and rigid pavements & pavement management **CO5** system. Illustrate about the skid resistance, structural evaluation & evaluation by deflection **CO6** measurements.

#### CE6505 DESIGN OF REINFORCED CONCRETE ELEMENTS

#### Students will be able to

| <b>CO1</b> | Describe the basic concepts of elastic method, ultimate load method & limit state method. |
|------------|-------------------------------------------------------------------------------------------|
| CO2        | Analysis & design of singly & doubly reinforced rectangular and flanged beams.            |
| CO3        | Illustrate the behaviour of RC members in bond & anchorage.                               |
| CO4        | Explain the types of columns, braced and unbraced columns & design of short rectangular   |
|            | and circular columns for axial, uniaxial and bi axial bending.                            |
| CO5        | Demonstrate the design of wall footing.                                                   |
| CO6        | Design of axially and eccentrically loaded rectangular pad & sloped footings.             |

#### CE6506 CONSTRUCTION TECHNIQUES, EQUIPMENT AND PRACTIC

#### Students will be able to

| CO1        | Describe about the compaction, curing & finishing & tesing of fresh & hardened concrete  |
|------------|------------------------------------------------------------------------------------------|
| CO2        | Illustrate the specifications, details & sequence of activities and construction co-     |
|            | ordination.                                                                              |
| CO3        | Explain the techniques of box jacking, pipe jacking and also under water construction of |
|            | diaphragm walls and basement.                                                            |
| <b>CO4</b> | Demonstrate the launching girders, bridge deck & off shore platforms.                    |
| CO5        | Describe the selection of equipment for earth work & earth moving operations             |
| CO6        | Illustrate about the equipments used for foundation and pile driving and also equipments |
|            | used for compaction, batching, mixing & concreting.                                      |

#### **GE6563 COMMUNICATION SKILLS- LABORATORY BASED**

| CO1 | Explain listening and note taking & listening to telephonic conversations.                      |
|-----|-------------------------------------------------------------------------------------------------|
| CO2 | Describe conversation practice, interview, group discussion and introducing oneself and others. |



(Approved by AICTE, Affiliated to Anna University, Chennai, India)

Kaikkurichi, Pudukkottai – 622 303

#### DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013

# COURSE OUTCOMES (CO)

| <b>CO3</b> | Illustrate different genres of text like literature, media & technical.                   |
|------------|-------------------------------------------------------------------------------------------|
| CO4        | Demonstrate blogs, tweets, online resume and e-mails and SMS & online texting.            |
| CO5        | Explain idioms and phrases, proverbs, collocations, chunks of language.                   |
| CO6        | Illustrate sentence structures, subject verb agreement, pronoun and antecedent agreement. |
|            |                                                                                           |

# CE6511 SOIL MECHANICS LABORATORY

#### Students will be able to

| CO1        | Determine the index properties of soils like, specific gravity of soil solids and sieve        |
|------------|------------------------------------------------------------------------------------------------|
|            | analysis.                                                                                      |
| CO2        | Illustrate the liquid limit, plastic limit, shrinkage limit and differential free swell tests. |
| CO3        | Describe insitu density and compaction characteristics like field density test.                |
| <b>CO4</b> | Demonstrate the moisture content density relationship using standard proctor compaction        |
|            | test.                                                                                          |
| CO5        | Explain engineering properties like permeability and one dimensional consolidation test.       |
| CO6        | Illustrate triaxial compression test in cohesion less soil & California bearing ratio test.    |

#### CE6512 SURVEY CAMP

#### Students will be able to

| CO1        | Describe the chaining like length & area calculation.       |
|------------|-------------------------------------------------------------|
| CO2        | Illustrate the ranging like direct and indirect ranging.    |
| CO3        | Demonstrate the leveling like fly and check leveling.       |
| <b>CO4</b> | Explain about the contouring like grid & radial contouring. |
| CO5        | Describe the triangulation.                                 |
| <b>CO6</b> | Explain the trilateration and rectangulation.               |
|            |                                                             |

#### **VI SEMESTER**

# CE6601 DESIGN OF REINFORCED CONCRETE & BRICK MASONRY STRUCTURES

#### Students will be able to

| CO1        | Design of cantilever & counterfort retaining walls.                                             |
|------------|-------------------------------------------------------------------------------------------------|
| CO2        | Design of rectangular & circular water tanks both below & above ground level.                   |
| CO3        | Design of staircases, flat slabs & principle of design of mat foundation.                       |
| <b>CO4</b> | Describe the characteristics of yield line, collapse load & plastic moment.                     |
| CO5        | Demonstrate the classification of walls, lateral supports, stability & effective height of wall |
|            | & columns.                                                                                      |
| <b>CO6</b> | Describe the effective length of walls, design loads, load dispersion & permissible stresses.   |

# CE6602 STRUCTURAL ANALYSIS II

| CO1        | Explain about the equilibrium, compatibility, determinate & indeterminate structures.     |
|------------|-------------------------------------------------------------------------------------------|
| CO2        | Analysis of continuous beam & co ordinate transformations.                                |
| CO3        | Explain the descretisation of structures, displacement functions of truss & beam element. |
| <b>CO4</b> | Illustrate the statically indeterminate axial problems & pure bending in beam.            |
| CO5        | Analyse the space trusses using method of tension coefficients.                           |
| CO6        | Explain the beams in curved plan, suspension cables, suspension bridges with two & three  |
|            | hinged stiffening girders.                                                                |



#### (Approved by AICTE, Affiliated to Anna University, Chennai, India) Kaikkurichi, Pudukkottai – 622 303 DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013 COURSE OUTCOMES (CO)

#### **CE6603 DESIGN OF STEEL STRUCTURES**

#### Students will be able to

| ion. |
|------|
| odal |
|      |
|      |
|      |
|      |
|      |

#### CE6604 RAILWAYS, AIRPORTS AND HARBOUR ENGINEERING

#### Students will be able to

| CO1        | Describe about the significance of road, rail, air and water transports.            |
|------------|-------------------------------------------------------------------------------------|
| CO2        | Demonstrate the earthwork, stabilization of track on poor soil & tunneling methods, |
|            | drainage & ventilation.                                                             |
| <b>CO3</b> | Illustrate the air transport characteristics, classification & planning.            |
| <b>CO4</b> | Explain the runway design, orientation, wind rose diagram & runway length.          |
| CO5        | Describe the harbour, port, satellite port, docks, waves & tides.                   |
| CO6        | Demonstrate piers, break waters, wharves, jetties, quays and spring fenders.        |
|            |                                                                                     |

#### CE6605 ENVIRONMENTAL ENGINEERING II

#### Students will be able to

| CO1                        | Explain about the planning for sewerage system like sources of water generation, effects & estimation of sanitary sewage flow. |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| CO2                        | Illustrate the hydraulics of flow in sewers, objectives, design Period & design of sanitary & storm sewers.                    |
| CO3                        | Demonstrate the selection of treatment process, principles, functions, design & drawing of unit primary treatment sewage.      |
| CO4                        | Describe the selection of treatment methods, principles, functions, design & drawing of units of secondary treatment sewage.   |
| CO5                        | Explain the standards for disposal, methods, dilution & self purification of surface water bodies.                             |
| CO6                        | Describe the sludge digestion, bio gas recovery, sludge conditioning & dewatering.                                             |
| CE6002 CONCRETE TECHNOLOGY |                                                                                                                                |

| CO1 | Explain the different types, chemical composition & properties of cement.                  |
|-----|--------------------------------------------------------------------------------------------|
| CO2 | Demonstrate the accelerators, retarders, plasticizers, super plasticizers, water proofers, |
|     | chemical & mineral admixtures.                                                             |
| CO3 | Describe the principles of mix proportioning, properties of concrete related to mix design |
|     | & physical properties of materials required for mix design.                                |
| CO4 | Illustrate the workability, slump test, compaction factor test, segregation & bleeding of  |
|     | fresh concrete.                                                                            |
| CO5 | Explain the light weight & high strength concrete.                                         |
| CO6 | Describe the special concrete like shotcrete, polymer concrete & high performance          |
|     | concrete.                                                                                  |



#### (Approved by AICTE, Affiliated to Anna University, Chennai, India) Kaikkurichi, Pudukkottai – 622 303 DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013 COURSE OUTCOMES (CO)

#### **CE6611 ENVIRONMENTAL ENGINEERING LABORATORY**

#### Students will be able to

| CO1        | Find out the ammonia nitrogen in water, coagulation & precipitation process for treating |
|------------|------------------------------------------------------------------------------------------|
|            | waste water.                                                                             |
| CO2        | Describe the suspended, volatile, fixed & settleable solids in waste water.              |
| CO3        | Explain about the B.O.D & C.O.D test.                                                    |
| <b>CO4</b> | Demonstrate the nitrate & phosphate in waste water.                                      |
| CO5        | Explain about the calcium, potassium and sodium.                                         |
| CO6        | Illustrate the heavy metal determination like chromium                                   |

#### CE6612 CONCRETE AND HIGHWAY ENGINEERING LABORATORY

#### Students will be able to

| CO1        | Describe the test on fresh concrete like slump cone, flow table, compaction factor test & Vee bee test.         |
|------------|-----------------------------------------------------------------------------------------------------------------|
| CO2        | Demonstrate the compressive strength of cube & cylinder and flexure & modulus of rigidity of hardened concrete. |
| CO3        | Illustrate the specific gravity, grading, crushing strength, abrasion & impact value test on aggregate.         |
| <b>CO4</b> | Describe the penetration, softening point, ductility, flash & fire points test on bitumen.                      |
| CO5        | Explain the binder content on bituminous mixes.                                                                 |
| <b>CO6</b> | Illustrate the Marshall stability, flow values and density of bituminous mixes.                                 |

#### VII SEMESTER

#### CE6701 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING

#### Students will be able to

| CO1        | Explain & differentiate the static & dynamic loading, degree of freedom & idealization of |
|------------|-------------------------------------------------------------------------------------------|
|            | structure as single degree of freedom system.                                             |
| CO2        | Describe two degree of freedom system, mode of vibrations, and formulation of equation of |
|            | motion of multi degree of freedom system.                                                 |
| CO3        | Demonstrate the elements of engineering seismology, causes of earthquake & plate tectonic |
|            | theory.                                                                                   |
| CO4        | Explain effect of earthquake on different types of structures & behaviour of reinforced   |
|            | cement concrete elements.                                                                 |
| CO5        | Illustrate the causes of damage, planning considerations & earthquake resistant design of |
|            | masonry structures.                                                                       |
| <b>CO6</b> | Describe the reinforced concrete buildings, lateral load analysis, design & detailing.    |

#### CE6702 PRESTRESSED CONCRETE STRUCTURES

| CO1        | Describe the basic concepts, advantages, materials required, system & methods of            |
|------------|---------------------------------------------------------------------------------------------|
|            | prestressing.                                                                               |
| CO2        | Explain basic assumptions for calculating flexural stresses & permissible stress in steel & |
|            | concrete.                                                                                   |
| <b>CO3</b> | Demonstrate the factors influencing deflections & short term deflections of uncracked       |



## SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN (Approved by AICTE, Affiliated to Anna University, Chennai, India) Kaikkurichi, Pudukkottai – 622 303 DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013

# **COURSE OUTCOMES (CO)**

|     | members.                                                                               |
|-----|----------------------------------------------------------------------------------------|
| CO4 | Analyse & design of composite beams & methods of achieving continuity in continuous    |
|     | beams.                                                                                 |
| CO5 | Design of tension & compression members.                                               |
| CO6 | Illustrate the methods of achieving partial prestressing, merits & demerits of partial |
|     | prestressing.                                                                          |

#### CE6703 WATER RESOURCES AND IRRIGATION ENGINEERING

#### Students will be able to

| CO1        | Describe the water resources survey & water resources of India & Tamilnadu.          |
|------------|--------------------------------------------------------------------------------------|
| CO2        | Explain the economics of water resources planning & national water policy.           |
| <b>CO3</b> | Demonstrate the irrigation engineering needs, merits & demerits.                     |
| CO4        | Illustrate the different types of impounding structures.                             |
| CO5        | Describe the lift irrigation, tank irrigation & well irrigation.                     |
| CO6        | Illustrate the surface, sub surface & micro irrigation, merits demerits & irrigation |
|            | scheduling.                                                                          |

#### **CE6713 ESTIMATION AND QUANTITY SURVEYING**

#### Students will be able to

| CO1        | Explain about the calculation of quantities of brickwork, RCC, PCC, plastering, white washing & colour washing. |
|------------|-----------------------------------------------------------------------------------------------------------------|
| CO2        | Demonstrate about the estimation of septic tank, soak pit, sanitary & water supply installation.                |
| CO3        | Estimate the rates, specifications, sources & preparation of detailed & general specifications.                 |
| <b>CO4</b> | Illustrate the basics of value engineering, capitalized value & depreciation.                                   |
| CO5        | Explain the principles for report preparation & report on estimate of residential building.                     |
| <b>CO6</b> | Describe about the roads, water supply & sanitary installation.                                                 |

#### CE6007 HOUSING PLANNING AND MANAGEMENT

#### Students will be able to

| CO1        | Describe the basics concepts of house, home, house hold, apartments & multi storey building.    |
|------------|-------------------------------------------------------------------------------------------------|
| CO2        | Demonstrate the basic concepts, contents, & standards for housing programming.                  |
| CO3        | Illustrate the formulation of housing projects, land use & soil stability analysis.             |
| <b>CO4</b> | Explain new construction techniques, cost effective modern materials & methods of construction. |
| CO5        | Describe the evaluation of housing projects for sustainable principle.                          |
| CO6        | Illustrate public private partnership projects & viability gap funding.                         |
|            |                                                                                                 |

#### **CE6011 AIR POLLUTION MANAGEMENT**

| <b>CO1</b> | Describe about the air pollutants, particulates & gaseous pollutants.              |
|------------|------------------------------------------------------------------------------------|
| CO2        | Demonstrate about the elements of atmosphere, meteorological factors & wind roses. |
| CO3        | Illustrate the basic concepts of control, principles & design of control measures. |
| <b>CO4</b> | Explain air quality standards, air quality monitoring & preventive measures.       |



(Approved by AICTE, Affiliated to Anna University, Chennai, India)

#### Kaikkurichi, Pudukkottai – 622 303

# DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013

# **COURSE OUTCOMES (CO)**

| CO6 Demonstrate the effects, assessment, standards, control methods & prevention of noise pollution. | CO5 | Describe about the sources of noise pollution.                                                   |
|------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------|
|                                                                                                      | CO6 | Demonstrate the effects, assessment, standards, control methods & prevention of noise pollution. |

#### CE6711 COMPUTER AIDED DESIGN AND DRAFTING LABORATORY

#### Students will be able to

| CO1        | Design & drawing of RCC cantilever & counter fort type retaining walls with reinforcement details. |
|------------|----------------------------------------------------------------------------------------------------|
| CO2        | Design of solid slab & RCC Tee beam bridges for IRC loading & reinforcement details.               |
| CO3        | Design & drafting of circular & rectangular water tank.                                            |
| <b>CO4</b> | Design of plate girder bridges & truss girder bridges.                                             |
| CO5        | Design of detailed drawings including connections.                                                 |
| <b>CO6</b> | Design of hemispherical bottomed steel tank.                                                       |

#### **CE6712 DESIGN PROJECT**

#### Students will be able to

| CO1        | Explain about the experience in designing various design problems related to Civil |
|------------|------------------------------------------------------------------------------------|
|            | Engineering.                                                                       |
| CO2        | Demonstrate the basic concepts of building design philosophies                     |
| <b>CO3</b> | Illustrate the concept of codal provisions                                         |
| <b>CO4</b> | Demonstrate about the guidelines used for design procedure                         |
| CO5        | Describe about the creativity and presentation skills                              |
| <b>CO6</b> | Explain the knowledge about the various planning and designing of softwares        |

#### VIII SEMESTER

# MG6851- PRINCIPLES OF MANAGEMENT

#### Students will be able to

| CO1 | Describe about the types of business organization, sole proprietorship, partnership, |
|-----|--------------------------------------------------------------------------------------|
|     | company-public & private sector enterprises.                                         |
| CO2 | Demonstrate the nature & purpose of planning, types & objective of planning.         |
| CO3 | Illustrate the nature & purpose, formal & informal organization.                     |
| CO4 | Explain the foundations of individual & group behaviour, job satisfaction & job      |
|     | enrichment.                                                                          |
| CO5 | Describe the system & process of controlling, budgetary & non budgetary control      |
|     | techniques.                                                                          |
| CO6 | Illustrate about productivity problems & management.                                 |

# CE6016 - PREFABRICATED STRUCTURES

| CO1 | Describe about the basic need for prefabrication, principles, materials & modular co  |
|-----|---------------------------------------------------------------------------------------|
| CO2 | Explain the behaviour of structural components & large panel construction.            |
| CO3 | Demonstrate disuniting of structures & design of cross section based on efficiency of |
|     | material used.                                                                        |
| CO4 | Illustrate the joints for different structural connections, dimensions & detailing.   |



(Approved by AICTE, Affiliated to Anna University, Chennai, India)

#### Kaikkurichi, Pudukkottai – 622 303

#### DEPARTMENT OF CIVIL ENGINEERING REGULATION 2013

# **COURSE OUTCOMES (CO)**

| CO5 | Explain progressive collapse & codal provisions.                                          |
|-----|-------------------------------------------------------------------------------------------|
| CO6 | Describe the equivalent design load for considering abnormal effects such as earthquake & |
|     | cyclones etc.,                                                                            |

#### CE6021- REPAIR & REHABILITATION OF STRUCTURES

| Students will be able to |                                                                                              |
|--------------------------|----------------------------------------------------------------------------------------------|
| CO1                      | Describe the Maintenance, Repair & rehabilitation, facets of maintenance & importance of     |
|                          | maintenance.                                                                                 |
| CO2                      | Explain the quality assurance for concrete, strength, durability & thermal properties of     |
|                          | concrete.                                                                                    |
| CO3                      | Demonstrate the Special concrete like polymer concrete, sulphur infiltrated concrete & fiber |
|                          | reinforced concrete.                                                                         |
| <b>CO4</b>               | Illustrate the techniques for repair & protection methods.                                   |
| CO5                      | Explain the strengthening of structural elements & repair of structures.                     |
| CO6                      | Describe the demolition techniques & case studies.                                           |

#### CE6811 PROJECT WORK

| CO1        | Explain about the practical problems and find solution by formulating proper methodology. |  |
|------------|-------------------------------------------------------------------------------------------|--|
| CO2        | Describe the solution by formulating proper methodology.                                  |  |
| <b>CO3</b> | Demonstrate the importance of codal provisions                                            |  |
| <b>CO4</b> | Illustrate the problem solving techniques in civil engineering                            |  |
| CO5        | Explain the technical and presentation skills                                             |  |
| CO6        | Describe the solution for practical problems                                              |  |
|            |                                                                                           |  |

